
Integrating external agents with ElevenLabs Agents' voice orchestration
Patterns for integrating ElevenLabs voice orchestration with complex and stateful agents
मजबूत मूल्यांकन मानदंड और बातचीत सिमुलेशन का उपयोग करके कन्वर्सेशनल AI एजेंट्स का प्रभावी परीक्षण और सुधार कैसे करें, जानें।
जब कन्वर्सेशनल
इन सवालों ने हमारे काम को आकार दिया एल, हमारा डॉक्यूमेंटेशन असिस्टेंट जो Conversational AI. जैसे-जैसे El विकसित हुआ, हमने निगरानी के लिए एक सिस्टम बनाया, मूल्यांकन, और टेस्टिंग एजेंट्स के लिए, जो मूल्यांकन मानदंड और बातचीत सिमुलेशन पर आधारित है।
किसी भी एजेंट को सुधारने की शुरुआत उसके व्यवहार को समझने से होती है। इसके लिए हमें अपने मूल्यांकन मानदंडों को परिष्कृत करना पड़ा और यह सुनिश्चित करना पड़ा कि वे एजेंट के प्रदर्शन की निगरानी के लिए पर्याप्त सटीक और विश्वसनीय हों। हम असफल बातचीत को उस स्थिति के रूप में परिभाषित करते हैं जहां एजेंट या तो गलत जानकारी देता है या यूज़र को उनके लक्ष्य तक पहुंचने में मदद नहीं करता।

यदि इंटरैक्शन विफल होता है, तो बातचीत स्वयं वैध नहीं है। यदि कोई अन्य मानदंड विफल होता है, तो हम आगे जांच करते हैं। जांच यह मार्गदर्शन करती है कि हम एजेंट को कैसे सुधारें। कभी-कभी यह टूल के उपयोग या समय को परिष्कृत करने के बारे में होता है। अन्य समय में, यह असमर्थित कार्यों को रोकने के लिए गार्डरेल जोड़ने के बारे में होता है।
एक बार जब हमने सुधार के लिए क्या करना है पहचान लिया, अगला कदम परीक्षण है। यहीं पर हमारा कन्वर्सेशन सिमुलेशन API इसमें आता है। यह वास्तविक यूज़र परिदृश्यों का अनुकरण करता है - दोनों संपूर्ण और लक्षित खंडों में - और उत्पादन में लागू किए गए समान मानदंडों का उपयोग करके परिणामों का स्वचालित रूप से मूल्यांकन करता है। यह टूल मॉकिंग और कस्टम मूल्यांकन का समर्थन करता है, जिससे यह विशिष्ट व्यवहारों का परीक्षण करने के लिए पर्याप्त लचीला बनता है।
स्पष्ट, केंद्रित परिदृश्य हमें नियंत्रित करने देते हैं कि LLM का परीक्षण किस पर किया जा रहा है, यह सुनिश्चित करते हुए कि किनारे के मामलों, टूल उपयोग और फॉलबैक लॉजिक के लिए कवरेज हो।
अंतिम हिस्सा है स्वचालन. हमने अपने GitHub DevOps फ्लो के साथ जुड़ने के लिए ElevenLabs की ओपन APIs का उपयोग किया, मूल्यांकन और सिमुलेशन को हमारे CI/CD पाइपलाइन में एम्बेड करके। हर अपडेट को तैनाती से पहले स्वचालित रूप से परीक्षण किया जाता है। यह प्रतिगमन को रोकता है और हमें वास्तविक दुनिया के प्रदर्शन पर तेज़ प्रतिक्रिया देता है।
इस प्रक्रिया ने El को बनाने और बनाए रखने के तरीके को बदल दिया। हमने एक फीडबैक लूप बनाया है जो वास्तविक उपयोग को संरचित मूल्यांकन, लक्षित परीक्षण, और स्वचालित सत्यापन से जोड़ता है, जिससे हम सुधारों को तेजी से और अधिक आत्मविश्वास के साथ जारी कर सकते हैं।
और यह एक फ्रेमवर्क है जिसे हम अब किसी भी

Patterns for integrating ElevenLabs voice orchestration with complex and stateful agents

Exploring how AI audio can support the creative process
ElevenLabs द्वारा संचालित एजेंट्स